Question			Mark
Number			
1(a)	Graph does not have a zero gradient		
	Or Graph does not shows constant velocity		
	Or the velocity is constantly changing Or Graph always shows an acceleration (or deceleration)		
	Or Graph not horizontal/ flat		
	Or Graph not parallel to the time/x-axis	(1)	1
	(Accept 'line/gradient/tangent' in place of 'graph')		
1(b) (i)	Use of gradient of tangent	(1)	
	a = 6.5 to 7.4 (m s ⁻²) (conditional mark)	(1)	2
	(Check graph to make sure that the values have been read		
	score 1 mark even if the answer falls in the above range)		
	Example of calculation		
	Acceleration = 108		
	Acceleration = 6.8 m s^{-2}		
		(1)	
I(b)(11)	Use of $F = ma$	(1)	
	F = 0.016 to 0.018(N) (ecf acceleration from (b)(i))	(1)	2
	Example of calculation		
	$\overline{F} = 6.9 \text{ m s}^{-2} \times 0.0024 \text{ kg}$		
	= 0.017 N		
		(4)	
1 (b) (iii)	Use of $W = mg$	(1)	
	Drag = 0.006 to $0.008(N)$ (ecf)	(1)	2
	Example of calculation $W = 0.0024 \text{ kg} \times 9.81 \text{ N} \text{ kg}^{-1} = 0.0235 \text{ N}$		
	0.017 = 0.0235 - drag		
	Drag = 0.0065 N		
1 (b) (iv)	Use of Stokes' law equation with velocity either 5.2 m s ^{-1} or 6.6	(1)	
	$m s^{-1}$	(1)	2
	$r = 5.3 \times 10$ (IN) or 4.3×10 (IN) (no unit error)	(1)	
	Example of calculation		
	$F = 6\pi\eta rv$		
	$= 6\pi \times 1.8 \times 10^{-5} \times 2 \times 10^{-2} \times 5.2 \text{ m s}^{-1}$		
	$= 3.5 \times 10^{-3} \text{ N}$		
PhysicsAr	IdMathsTutor.com		

1 (c)(i)	Correctly identifies a region of laminar flow and region of turbulent flow	(1)	
1 (c)(ii)	the idea that there is turbulent flow Or ball is moving fast Or this is a large sphere		
	Or Statement about Stokes law force for laminar flow only Or Stoke's law assumes that the ball is moving slowly (which this is not) Or Stoke's law is for a small sphere (and the bellow ball is large)		
	Or A large amount of eddies increases the drag	(1)	1
1 (d)	Max 3 Falls with constant acceleration	(1)	
	Fails with constant acceleration	(1)	
	At about 0.8 s: the ball bounces Or the ball changes direction	(1)	
	Speed of ball after the bounce is less than the speed before the bounce	(1)	
	Max height reached at about 1.3 s.	(1)	
	Accelerations are the same before and after the bounce	(1)	3
	Total for question		14

Question Number	Answer		Mark
2(a)(i)	Laminar: at least 2 roughly parallel lines before object	(1)	
2(u)(l)	Turbulent: lines crossing or showing change in direction of greater than 90°.	(1)	2
	(Max 1 mark if the laminar flow not shown leading into the turbulent flow.)		
	Turbulent flow not to start before the oject		
	i.e. to the left of this line		
	2 marks 1 mark only		
2(a)(11)	Laminar flow:		
	No abrupt change in velocity of flow		
	(must mention both speed and direction)		
	(must mention both speed and direction) OR valoaity at a point is constant OR flows in lowers/flowlings/streamlings		
	OR levers do not mix/gross OP levers are perallel	(1)	
	OR layers do not mix/cross OR layers are paraller	(1)	
	Turbulent flow:		
	Mixing of lavers/flowlines/streamlines OR crossing of lavers etc. OR contains		
	eddies OR contains vortices/whirlpools OR abrupt/random changes in speed or		
	direction	(1)	2
2(b)(i)	Greater velocity with lower viscosity	(1)	
2(b)(ii)	Lower viscosity	(1)	
	So faster flow OR greater velocity	(1)	2
	Total for question		7

Question	Answer	Mark
Number		
3	Complete the diagram	
	Before A = laminar flow - minimum of 2 continuous smooth lines roughly parallel to wing surface which don't cross After A = turbulent flow - lines crossing, eddies, sudden changes in direction, change in direction > 90°, lines disappearing and appearing	(1) (1)
	Total for question	2

Question	Answer	Mark
Number		
4 (a)	Show that the upthrust is about 8 x 10 ⁻⁴ N Use of mass = density x volume Correct answer for upthrust (= 8.3 x 10 ⁻⁴ (N)) <u>Example of calculation</u> mass of liquid displaced = density x volume	(1) (1)
	= 1300 kg m ⁻³ x 6.5 x 10 ⁻⁸ m ³ = 8.45 x 10 ⁻⁵ kg upthrust = 8.45 x 10 ⁻⁵ kg x 9.81 m s ⁻² = 8.3 x 10 ⁻⁴ N	
4 (b)	Show that the viscosity of the liquid is about 2 kg m ⁻¹ s ⁻¹	
	Correct summary of forces, e.g. V = W - U Use of $F = 6\pi\eta rv$ Correct answer for viscosity (1.8 (kg m ⁻¹ s ⁻¹))	(1) (1) (1)
	Example of calculation Viscous drag = W - U = $4.8 \times 10^{-3} \text{ N} - 8.3 \times 10^{-4} \text{ N} = 3.97 \times 10^{-3} \text{ N}$ $F = 6\pi\eta rv$ $\eta = 3.97 \times 10^{-3} \text{ N}$ / (6 x π x 4.6 x 10 ⁻² m s ⁻¹ x 2.5 x 10 ⁻³ m) = 1.8 kg m ⁻¹ s ⁻¹	
4 (-)	[Watch out for out of clip answers]	
4 (C)	State a relevant variable to control	
	<u>Temperature</u>	(1)
	Total for question	6

Question	Answer	Mark
Number		
5 (a)	Add to the diagram to show the water flow at A_2 and B_2 .	
	Laminar at A_2 – minimum 2 lines, approximately straight and parallel,	
	lines mustn't cross (1)	2
	Turbulent at B_2 – indicated by lines crossing / change in direction > 90°/	
	chaotic lines(1)	
5 (b)	Name and describe the type of water flow at A_2 and at B_2 .	
	A - laminar flow / streamline flow (1)	
	no abrupt change in (direction or speed of) flow/ flows in straight lines /	
	velocity at any point constant / no mixing of layers [no eddies is not	
	sufficient; smooth is not sufficient; no disruption of lines not sufficient](1)	
		4
	B - turbulent flow (1)	
	mixing of layers / eddies / sudden change in (direction or speed of) flow	
	/ velocity at a point not constant (1)	
	[NB - All independent marks]	-
	Total for question	6

Question	Answer	Mark
Number		
*6	(QWC – work must be clear and organised in a logical manner	
	using technical terminology where appropriate)	
	New design:	
	is more streamlined Or more curved Or more aerodynamic (1)	
	reduces turbulent air flow Or fewer eddy currents Or increases	
	laminar air flow (1)	
	less (air) resistance/drag/friction (1)	
	less energy transferred to the air (from the lorry)	
	Or less work done against (air)resistance	
	Or less power/energy/work needs to be supplied to the lorry (to	
	maintain the same speed) (1)	4
	Allow converse argument for references to the traditional trailer.	
	Total for Question	4

Question Number	Answer	Mark
7(a)(i)	(For upward motion) the upthrust > weight (+drag) (1) Or there is a resultant upward force	
	(This is because) greater volume/mass of liquid is displaced (1) (Accept more liquid displaced)	
	Upthrust increases (and mass/weight of wax drop is constant) (1)	3
7(a)(ii)	<u>Upthrust</u> , weight and (viscous) drag identified as the three forces (1)	
	Correct equation e.g. upthrust = weight + drag Or upthrust - weight -drag = 0 (1) (Max 1 for undefined symbols used)	2
7(b)	herTemperature decreases(1)Density of drop increases(1)Upthrust reduces(1)Or(1)Temperature decreases(1)Viscosity (of clear liquid) greater(1)Drag will be greater (at the top)(1)	3
	Total for question	8

Question	Answer		Mark
Number			
8	(QWC – work must be clear and organised in a logical manner using technical terminology where appropriate)		
	As the lava cools, its viscosity increases	(1)	
	Rhyolite's viscosity is greater than basalt's	(1)	
	Rhyolite flows more slowly than basalt Or		
	high viscosity gives low flow rate	(1)	
	Basalt flows a long way before solidifying /cooling (so shield shape) Or		
	rhyolite flows a short distance before solidifying /cooling (so cone shape)	(1)	4
	Total for Question		4

Question	Answer	Mark
Number		
9	Viscosity (of the oil) decreases (at higher temperature) (1)	
	Rate of flow increases / Spreads more quickly(1)	2
	[Full converse argument about a cold pan. 1 max]	
	Total for question	2

Question	Answer		Mark
10(a)(i)	Laminar flow – no abrupt change in direction or speed of flow or		
10(a)(1)	air flows in layers/flowlines/streamlines or no mixing of layers or layers		
	remain parallel or velocity at a (particular) point remains constant	(1)	
		(-)	
	Turbulent flow – mixing of layers or contains eddies/vortices or		
	abrupt/random changes in speed or direction	(1)	2
10(a)(ii)	Relative speed of upper surface of ball to air is greater (than at lower surface)		
	Or		
	The idea that the direction of movement at the top (due to spin) is opposite		
	to/against (direction of) air flow	(1)	1
	(converse arguments acceptable)		
10(b)	Force (by hell) on air unwords	(1)	
10(0)	roce (by bail) on all upwards	(1)	
	(Equal and) opposite force (on hall) by air Or (Equal and) opposite force acts		
	due to Newton's 3 rd law Or force of air on ball downwards	(1)	2
10(c)(i)	Use of $v = s/t$	(1)	
	Use of $s = 1/2 at^2$ to find s or use of correct equations that could lead to the		
	final answer.	(1)	
	\mathbf{D} (arrow 0.027 (ar))	(1)	2
	Distance = 0.037 (m)	(1)	3
	Example of calculation		
	Time = $2.7 / 31 = 0.087$ s		
	$s = 1/2 \ge 9.81 \text{ m s}^{-2} \ge (0.087 \text{ s})^2$		
	= 0.037 (m)		
10(c)(ii)	(Extra) downwards force (on the ball)	(1)	
	Greater downwards acceleration	(1)	
	Greater distance fallen Or drops further(in that time) Or needs to drop 15 cm,		
	4 cm drop not enough	(1)	3
	Total for question		11